Specific Contribution of the Transversus Abdominis for Postural Control Against Perturbation Caused by Kinesthetic Illusion

Author:

Akuzawa Hiroshi12ORCID,Morito Tsuyoshi3,Oshikawa Tomoki4,Okubo Yu5,Brumagne Simon6,Kaneoka Koji3

Affiliation:

1. Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan

2. Institute for Sport Sciences, Waseda University, Tokyo, Japan

3. Faculty of Sport Sciences, Waseda University, Tokyo, Japan

4. Center of General Education, Tokyo Keizai University, Tokyo, Japan

5. Faculty of Health and Medical Care, Saitama Medical University, Saitama, Japan

6. Department of Rehabilitation Sciences, KU Leuven–University of Leuven, Leuven, Belgium

Abstract

Functional independence of the transversus abdominis (TrA) from other trunk muscles for postural control is still unclear. This study aimed to clarify the specific function of the TrA to control standing posture by vibratory stimulation of the triceps surae. Fifteen men participated in this study. Muscle activity of the TrA, internal oblique, lumbar multifidus, gluteus maximus, rectus femoris, biceps femoris, gastrocnemius, and tibialis anterior was measured using fine-wire and surface electrodes. Participants were asked to maintain a quiet standing posture with and without vibration of the triceps surae, which induced a kinesthetic illusion and the concomitant backward sway of the body. The muscle activity of each muscle for 10 s was extracted with and without vibration. The muscle activity levels were compared between the conditions by a paired t-test or Wilcoxon signed-rank test. The activity of the TrA and rectus femoris was increased, whereas the internal oblique showed no change as a result of the induced kinesthetic illusion. In addition, the activity of the multifidus and biceps femoris was decreased. The TrA and rectus femoris could contribute to control the backward sway of the body. Furthermore, the TrA may have functional independence from the internal oblique during standing postural control. These results warrant further study in patients with low back pain.

Publisher

Human Kinetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3