The respiration climacteric in apple fruits

Author:

Abstract

Theories concerning the immediate origin of the increased rate of respiration at the climacteric in apples have been largely centred round an increase in mitochondrial activity (Hatch, Pearson, Millerd & Robertson 1959) probably because an increase in energy is required for synthetic processes occurring at this time (Pearson & Robertson 1954; Hulme 1954). Alternatively, it has been suggested (Millerd, Bonner & Biale 1953) that the close coupling between oxidation and phosphorylation in the mitochondrial system is destroyed during the climacteric period so that the respiration becomes uncontrolled. An improved method is used here for the isolation of mitochondria and soluble enzymes from apple tissue which obviates the inhibition of enzyme action by polyphenolic com pounds present in the tissue. The potential activity of isolated mitochondria increases over the climacteric, especially in the peel tissue, and the increase commences some days before any rise in CO 2 production of whole fruit is observed. In fruit detached from the tree before the climacteric has commenced, the climacteric is accompanied by a steep rise in the activity of malic enzyme and pyruvic carboxylase, particularly in the peel of fruit. After the climacteric peak, respiration rate and activity of malic enzyme and carboxylase fall, the changes running parallel particularly in the peel. The origin of the climacteric in fruit both ‘on’ and ‘off’ the tree, it is suggested, is due to an increase in activity — a synthesis, in fact— of malic enzyme and carboxylase, the source of energy for this synthesis being mitochondrial activity. This would also account for the increase in the respiratory quotient over the climacteric. The higher respiration rate of fruit at the climacteric peak on the tree (one-third more Co 2 production than in detached fruit) which is associated with a peculiar wateriness of the pulp, is due, it is claimed, to an increased permeability of the pulp tissue which allows a more rapid union between enzymes and substrates. The fall in respiration after the climacteric peak in storage (it has not been possible to follow post-climacteric changes in fruit on the tree) is attributed to a decrease in the activity of malic enzyme, carboxylase and the mitochondrial system operating the Krebs cycle; finally acid substrate becomes limiting. There is no evidence of an uncoupling, in the mitochondria, of oxidation and phosphorylation over the climacteric period.

Publisher

The Royal Society

Subject

General Medicine

Reference2 articles.

1. Allen R . J . L. 1940 Biochem.

2. Nature;Solomos T.;Bond.,1962

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3