Mechanical properties of the frog ear: vibration measurements under free- and closed-field acoustic conditions

Author:

Abstract

The acoustically induced motion of the eardrum of the frog was measured by an incoherent optical technique. When free-field sound stimulation was used, the eardrum vibration had a band-pass characteristic with maximum amplitude at 1‒2.5 kHz. However, when the sound was presented in a closed-field acoustic coupler the response was low-pass (cut-off frequency about 2.5 kHz). We demonstrate that the motion is the result of the mechanical properties of the eardrum and the sound pressure acting upon it. The net pressure is due to a combination of sound in­cident directly on the front of the drum and of sound conducted to the rear via internal (resonant) pathways. The frog ear therefore acts as a pressure-gradient receiver at low frequency and a pressure receiver at high frequency. A model is proposed and analysed in terms of its electrical analogue. This model accounts for both our own experimental observations and those of previous studies.

Publisher

The Royal Society

Subject

General Medicine

Reference52 articles.

1. Versatile precision source ratioing system for fast kinetic spectroscopy

2. Anson M. Pinder A. C. Keating M. J. & Chung S.-H. 1980 Application of laser speckle vibrom etry to measurements of the acoustic response of the mammalian eardrum. In Electro-Optics/ Laser International ' Science and Technology Press.

3. 80U.K. (ed. H. G. Jerrard) pp. 96-103. Guildford: I.P.C.

4. Bekesy G. von i 960 Experiments in hearing. New York: McGraw-Hill.

5. Beranek L. L. 1954 Acoustics. New York: McGraw-Hill.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3