Abstract
AbstractInteraural time differences (ITD) are one of several principle cues for localizing sounds. However, ITD are in the sub-millisecond range for most animals. Because the neural processing of such small ITDs pushes the limit of temporal resolution, the precise ITD-range for a given species and its usefulness - relative to other localization cues - was a powerful selective force in the evolution of the neural circuits involved. Birds and other non-mammals have internally coupled middle ears working as pressure-difference receivers that may significantly enhance ITD, depending on the precise properties of the interaural connection. Here, the extent of this internal coupling was investigated in chickens, specifically under the same experimental conditions as typically used in neurophysiology of ITD-coding circuits, i.e. with headphone stimulation. Cochlear microphonics (CM) were recorded simultaneously from both ears of anesthetized chickens under monaural and binaural stimulation, using pure tones from 0.1 to 3 kHz. Interaural transmission peaked at 1.5 kHz at a loss of only −5.5 dB; the mean interaural delay was 264 μs. CM amplitude strongly modulated as a function of ITD, confirming significant interaural coupling. The “ITD heard” derived from the CM phases in both ears showed enhancement, compared to the acoustic stimuli, by a factor of up to 1.8. However, the closed sound delivery systems impaired interaural transmission at low frequencies (< 1 kHz). We identify factors that need to be considered when interpreting neurophysiological data obtained under these conditions, and relating them to the natural free-field condition.Summary statementThe interaural time differences that chickens can use for sound localization are significantly greater than their small head size suggests. Closed-system sound stimulation can, however, produce complex artefacts.
Publisher
Cold Spring Harbor Laboratory