Affiliation:
1. Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
2. Cluster of Excellence “Hearing4all” and Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
Abstract
Interaural time differences (ITD) are one of several principle cues for localizing sounds. However, ITD are in the sub-millisecond range for most animals. Because the neural processing of such small ITDs pushes the limit of temporal resolution, the precise ITD-range for a given species and its usefulness - relative to other localization cues - was a powerful selective force in the evolution of the neural circuits involved. Birds and other non-mammals have internally coupled middle ears working as pressure-difference receivers that may significantly enhance ITD, depending on the precise properties of the interaural connection. Here, the extent of this internal coupling was investigated in chickens, specifically under the same experimental conditions as typically used in neurophysiology of ITD-coding circuits, i.e. with headphone stimulation and skull openings. Cochlear microphonics (CM) were recorded simultaneously from both ears of anesthetized chickens under monaural and binaural stimulation, using pure tones from 0.1 to 3 kHz. Interaural transmission peaked at 1.5 kHz at a loss of only −5.5 dB; the mean interaural delay was 264 µs. CM amplitude strongly modulated as a function of ITD, confirming significant interaural coupling. The “ITD heard” derived from the CM phases in both ears showed enhancement, compared to the acoustic stimuli, by a factor of up to 1.8. However, the experimental conditions impaired interaural transmission at low frequencies (< 1 kHz). We identify factors that need to be considered when interpreting neurophysiological data obtained under these conditions, and relating them to the natural free-field condition.
Funder
Australian Research Council
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献