Enhancement of mass transport and separation of species by oscillatory electroosmotic flows

Author:

Huang Hsin-Fu1,Lai Chun-Liang1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan UniversityTaipei 10617, Taiwan, Republic of China

Abstract

Mass transport driven by oscillatory electroosmotic flows (EOF) in a two-dimensional micro-channel is studied theoretically. The results indicate that the velocity and concentration distributions across the channel-width become more and more non-uniform as the Womersley number W , or the oscillation frequency, increases. It is also revealed that, with a constant tidal displacement, the total mass transport rate increases with the Womersley number W due to both the stronger convective and the transverse dispersion effects. The total mass transport rate also increases with the tidal displacement (with a fixed oscillation frequency) because of the associated stronger convective effects. The cross-over phenomenon of the mass transport rates for different species becomes possible with sufficiently large Debye lengths and at sufficiently large values of W . Consequently, with proper choices of the Debye length, oscillation frequency and tidal displacement, oscillatory EOF may become a good candidate for the first-step separation of the mass species.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3