Rheological impact on thermofluidic transport characteristics of generalized Maxwell fluids through a soft nanopore

Author:

Koner Priyanka1ORCID,Bera Subrata1ORCID,Ohshima Hiroyuki2ORCID

Affiliation:

1. Department of Mathematics, National Institute of Technology Silchar 1 , Silchar 788010, India

2. Faculty of Pharmaceutical Sciences, Tokyo University of Science 2 , 2641 Yamazaki Noda, Chiba, Japan

Abstract

The time-dependent electroosmotic flow (EOF) and heat transfer characteristic of a generalized Maxwell fluid through the polyelectrolyte layer (PEL) grafted nanopore are investigated while considering different permittivity between the PEL and electrolyte solution. The ion partitioning effects arise due to the different permittivity among these regions. Taking the ion partitioning effects, the analytic solution for the induced potential is established within and outside the PEL from the modified Poisson–Boltzmann equation assuming the Debye–Hückel approximation for a low surface charge. The Cauchy momentum equation with a suitable constitutive equation for fractional Maxwell fluids is derived, and the corresponding analytic solution is presented to provide the axial fluid flow distribution in the full domain. The energy fluxes that have major contributions to the energy equation mainly depend on axial conduction, convection due to electrolyte transport, and Joule heating effects for the external electric field. The analytical solutions of the energy equation for hydro-dynamically fully developed flow with constant thermophysical properties are presented to provide the temperature distribution considering constant heat flux at the nanopore wall. The influence of several important factors for characterizing heat transfer behavior is investigated in the present study. The maximum fluid velocity occurs when the permittivity between the PEL and electrolyte region is the same. The increasing values of fluid velocity imply higher convective heat transfer and make the Nusselt number higher. This study makes a conscious effort toward highlighting the modality controlling the heat transfer characteristics for the ion partitioning effects.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3