Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations

Author:

Nemitz Eiko1ORCID,Vieno Massimo1ORCID,Carnell Edward1ORCID,Fitch Alice2,Steadman Claudia3ORCID,Cryle Philip4,Holland Mike5,Morton R. Daniel6ORCID,Hall Jane2,Mills Gina2,Hayes Felicity2ORCID,Dickie Ian4,Carruthers David7,Fowler David1ORCID,Reis Stefan18ORCID,Jones Laurence29ORCID

Affiliation:

1. UK Centre for Ecology and Hydrology, Penicuik EH26 0QB, UK

2. UK Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, UK

3. School of GeoSciences, University of Edinburgh, Edinburgh EH8 9XP, UK

4. EFTEC, Economics for the Environment Consultancy, London, UK

5. ERMC, Reading, UK

6. UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, UK

7. Cambridge Environmental Research Consultants Ltd (CERC), Cambridge, UK

8. European Centre for Environment and Health, University of Exeter Medical School, Truro, UK

9. Department of Geography and Environmental Science, Liverpool Hope University, Liverpool, UK

Abstract

The potential to capture additional air pollutants by introducing more vegetation or changing existing short vegetation to woodland on first sight provides an attractive route for lowering urban pollution. Here, an atmospheric chemistry and transport model was run with a range of landcover scenarios to quantify pollutant removal by the existing total UK vegetation as well as the UK urban vegetation and to quantify the effect of large-scale urban tree planting on urban air pollution. UK vegetation as a whole reduces area (population)-weighted concentrations significantly, by 10% (9%) for PM 2.5 , 30% (22%) for SO 2 , 24% (19%) for NH 3 and 15% (13%) for O 3 , compared with a desert scenario. By contrast, urban vegetation reduces average urban PM 2.5 by only approximately 1%. Even large-scale conversion of half of existing open urban greenspace to forest would lower urban PM 2.5 by only another 1%, suggesting that the effect on air quality needs to be considered in the context of the wider benefits of urban tree planting, e.g. on physical and mental health. The net benefits of UK vegetation for NO 2 are small, and urban tree planting is even forecast to increase urban NO 2 and NO x concentrations, due to the chemical interaction with changes in BVOC emissions and O 3 , but the details depend on tree species selection. By extrapolation, green infrastructure projects focusing on non-greenspace (roadside trees, green walls, roof-top gardens) would have to be implemented at very large scales to match this effect. Downscaling of the results to micro-interventions solely aimed at pollutant removal suggests that their impact is too limited for their cost–benefit analysis to compare favourably with emission abatement measures. Urban vegetation planting is less effective for lowering pollution than measures to reduce emissions at source. The results highlight interactions that cannot be captured if benefits are quantified via deposition models using prescribed concentrations, and emission damage costs. This article is part of a discussion meeting issue ‘Air quality, past present and future’.

Funder

Natural Environment Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3