Phytoremediation Potential of Urban Trees in Mitigating Air Pollution in Tehran

Author:

Rabiee Marziyeh1,Kaviani Behzad1ORCID,Kulus Dariusz2ORCID,Eslami Alireza1ORCID

Affiliation:

1. Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht 4147654919, Iran

2. Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland

Abstract

The rapid urbanization and growing number of factories, human population, and motor vehicles have led to a drastic increase in the concentration of air pollutants. This smog is one of the most important disturbances in city planning. Urban trees play a vital role in the improvement of air quality. The selection of high-potential trees to capture air pollutants provides an attractive route for the mitigation of urban smog. The current study explored the air purification potential of the four most abundant trees, i.e., white mulberry (Morus alba L.), plane tree (Platanus orientalis L.), European ash (Fraxinus excelsior L.), and Tehran pine (Pinus eldarica Ten.)], as phytoremediators grown in three parks located in regions with low, moderate, and high levels of air pollution in Tehran on the mitigation of four urban hazardous gases (O3, NO2, CO, and SO2) and in altering the content of respiratory gases (CO2 and O2). The measurement of gas levels was carried out in September–October, from 1.30 to 1.50 m above the ground. The concentration of gases was measured by an ambient gas assessment device (Aeroqual). Broad-leaf deciduous species had a greater ability to mitigate O3, NO2, CO, CO2, and SO2 concentrations than needle-leaf evergreen species. The lowest levels of O3 and CO were found around P. orientalis (0.035 and 0.044 ppm, respectively), whereas the content of O2 was the highest in the atmosphere of this tree (20.80 ppm). The lowest content of NO2 (0.081 ppm) and SO2 (0.076 ppm) was determined in the vicinity of M. alba and F. excelsior, respectively. Among the studied species, P. orientalis proved to be the best for air phytoremediation, effectively mitigating hazardous gases more than the other species. Conversely, P. eldarica is not recommended for air phytoremediation in urban green spaces. Future research should focus on exploring a wider range of tree species and their potential for air pollution mitigation in diverse urban settings across different seasons and climatic conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3