Role of urban vegetation in air phytoremediation: differences between scientific research and environmental management perspectives

Author:

Gong ChengORCID,Xian ChaofanORCID,Wu Tong,Liu Jingru,Ouyang Zhiyun

Abstract

AbstractAir pollutant removal by urban vegetation is perceived to be a key ecosystem service for mitigating air pollution. However, the effectiveness of air phytoremediation in cities requires more synthesis to inform environmental management. A Bayesian meta-analysis approach was used to quantify the effectiveness of the removal of typical air pollutants—particle matter (PM), nitrogen oxide (NOx), sulfur dioxide (SO2) and ozone (O3)—by synthesizing global field measurement studies. The results revealed that urban vegetation can mitigate the growth of air pollutant concentrations, with reduction rates of 16.5~26.7% for PM, 13.9~36.2% for NOx, and 20.5~47.8% for SO2. However, they failed to significantly mitigate ground-level O3, corresponding to an increase of 5.1~25.9%. The variability in effect sizes was mainly influenced by the distance to nearest highway, ambient concentration, relative humidity, and green coverage. A questionnaire survey conducted in Shenzhen city (China) showed that most environmental managers supposed positive impacts of urban vegetation on all four air pollutants, which was at odds with our findings with respect to O3. This study can inform the lessening of discrepancies between scientific research and environmental managers’ perceptions on how to improve air phytoremediation for urban air pollution mitigation in China and elsewhere.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Shenzhen Municipal Bureau Ecology and Environment

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3