Passively parallel regularized stokeslets

Author:

Gallagher Meurig T.12ORCID,Smith David J.23ORCID

Affiliation:

1. Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham B15 2TT, UK

2. Institute for Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK

3. School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

Abstract

Stokes flow, discussed by G.G. Stokes in 1851, describes many microscopic biological flow phenomena, including cilia-driven transport and flagellar motility; the need to quantify and understand these flows has motivated decades of mathematical and computational research. Regularized stokeslet methods, which have been used and refined over the past 20 years, offer significant advantages in simplicity of implementation, with a recent modification based on nearest-neighbour interpolation providing significant improvements in efficiency and accuracy. Moreover this method can be implemented with the majority of the computation taking place through built-in linear algebra, entailing that state-of-the-art hardware and software developments in the latter, in particular multicore and GPU computing, can be exploited through minimal modifications (‘passive parallelism’) to existing Matlab computer code. Hence, and with widely available GPU hardware, significant improvements in the efficiency of the regularized stokeslet method can be obtained. The approach is demonstrated through computational experiments on three model biological flows: undulatory propulsion of multiple Caenorhabditis elegans , simulation of progression and transport by multiple sperm in a geometrically confined region, and left–right symmetry breaking particle transport in the ventral node of the mouse embryo. In general an order-of-magnitude improvement in efficiency is observed. This development further widens the complexity of biological flow systems that are accessible without the need for extensive code development or specialist facilities. This article is part of the theme issue ‘Stokes at 200 (part 2)’.

Funder

University of Birmingham

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference70 articles.

1. On the effect of the internal friction of fluids on the motion of pendulums;Stokes G;Trans. Camb. Phil. Soc.,1851

2. The propulsion of sea-urchin spermatozoa;Gray J;J. Exp. Biol.,1955

3. The self-propulsion of microscopic organisms through liquids

4. On the motion of small particles of elongated form suspended in a viscous liquid;Burgers J;Kon. Ned. Akad. Wet. Verhand. (Eerste Sectie),1938

5. Flagellar Hydrodynamics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3