The self-propulsion of microscopic organisms through liquids

Author:

Abstract

Since the Reynolds number of motion of microscopic organisms through liquids, defined as L ρ V /μ, where L is the length of the organism, V the velocity with which it moves, ρ the density of the liquid and μ the viscosity, is small, propulsion is due predominantly to the viscous forces, the effect of the inertial forces being negligible. The best-known problem that neglects all inertial forces is Stokes’s solution for the slow steady fluid motion past a sphere, in which the velocity field can be described in terms of singularities situated at the centre of the sphere. The movement of microscopic organisms is determined by placing distributions of these singularities inside the surface of the organism and satisfying all boundary conditions. The motions that are considered are restricted to organisms which propagate some kind of disturbance along filaments of circular cross-section with small radius. The first problem to be considered is that of an infinite thin filament along which are propagated plane waves of lateral displacement. Formulae for the velocity of propulsion are obtained for (i) the limiting case of zero radius and (ii) the case when the amplitude of the displacement is small compared to the wave-length. Computations have been carried out to estimate the propulsion in the case of small non-zero filament radius when the amplitude is larger than that allowed for in case (ii) above. It is also shown that the propulsion of a finite filament which forms itself into a single wave is very near to that of an infinite filament with the same wave motion. The second problem is that of an infinite filament along which any general three-dimensional disturbance is propagated. The movement is then deduced for the propagation of a spiral wave along an infinite filament, and also for the propagation of longitudinal waves along a finite filament.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference4 articles.

1. Lamb H. 1932 Hydrodynam ics 6th ed. p. 603. Cambridge University Press.

2. Lighthill M. J. 1952 Com wun.Pure ApMath. 5 109.

3. Taylor Sir Geoffrey 1951 Proc. Roy. Soc A 209 407.

4. Proc. Roy;Taylor Sir Geoffrey;Soc. A,1952

Cited by 389 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3