Axonemal regulation by curvature explains sperm flagellar waveform modulation

Author:

Gallagher Meurig T.ORCID,Kirkman-Brown Jackson C.ORCID,Smith David J.ORCID

Abstract

AbstractFlagellar motility is critical to natural and many forms of assisted reproduction. The rhythmic beating and wave propagation by the flagellum propels sperm through fluid and enables modulation between penetrative progressive motion, activated side-to-side yaw and hyperactivated movement associated with detachment from epithelial binding. These changes occur in response to the properties of the surrounding fluid environment, biochemical activation state, and physiological ligands, however a parsimonious mechanistic explanation of flagellar beat generation that can explain motility modulation is lacking. In this paper we present the Axonemal Regulation of Curvature, Hysteretic model (ARCH), a curvature control-type model based on switching of active moment by local curvature, embedded within a geometrically nonlinear elastic model of the flagellum exhibiting planar flagellar beats, together with nonlocal viscous fluid dynamics. The biophysical system is parameterised completely by four dimensionless parameter groupings. The effect of parameter variation is explored through computational simulation, revealing beat patterns that are qualitatively representative of penetrative (straight progressive), activated (highly yawing) and hyperactivated (non-progressive) modes. Analysis of the flagellar limit cycles and associated swimming velocity reveals a cusp catastrophe between progressive and non-progressive modes, and hysteresis in the response to changes in critical curvature parameter. Quantitative comparison to experimental data on human sperm exhibiting typical penetrative, activated and hyperactivated beats shows a good fit to the time-average absolute curvature profile along the flagellum, providing evidence that the model is capable of providing a framework for quantitative interpretation of imaging data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3