Experimental study on the compressive strength, damping and interfacial transition zone properties of modified recycled aggregate concrete

Author:

Lei Bin12,Liu Huajian1,Yao Zhimin23ORCID,Tang Zhuo2

Affiliation:

1. School of Civil Engineering and Architecture, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China

2. Center for Built Infrastructure Research (CBIR), School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia

3. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, People's Republic of China

Abstract

At present, many modification methods have been proposed to improve the performance of recycled aggregate concrete (RAC). In this study, tests on the compressive strength and damping properties of modified RAC with the addition of different proportions of recycled coarse aggregate (RCA) (0, 50, 100%), rubber powder (10, 15, 20%), steel fibre (5, 7.5, 10%) and fly ash (15, 20, 5%) are carried out. To elucidate the effect of the modification method on the interfacial transition zone (ITZ) performance of RAC, model ITZ specimens are used for push-out tests. The results show that when the replacement rate of RCA reaches 100%, the loss factor of the RAC is 6.0% higher than that of natural aggregate concrete; however, the compressive strength of the RAC decreases by 22.6%. With the addition of 20% rubber powder, the damping capacity of the modified RAC increases by 213.7%, while the compressive strength of the modified RAC decreases by 47.5%. However, with the addition of steel fibre and fly ash, both the compressive strength and loss factor of the RAC specimens increase. With a steel fibre content of 10 wt%, the compressive strength and loss factor of the RAC increase by 21.9% and 15.2%, respectively. With a fly ash content of 25 wt%, the compressive strength and loss factor of the RAC increase by 8.6% and 6.9%, respectively. This demonstrates that steel fibre and fly ash are effective in improving both the damping properties and compressive strength of RAC, and steel fibre is more effective than fly ash. Two methods were used for modification of the RAC: reinforcing the RCA through impregnation with a 0.5% polyvinyl alcohol (PVA) emulsion and nano-SiO 2 solution, and strengthening the RAC integrally through the addition of fly ash as an admixture. Both of these techniques can improve the ITZ bond strength between the RAC and new mortar. Replacing 10% of the cement with fly ash in the new mortar is shown to be the best method to improve the ITZ strength.

Funder

Natural Science Foundation of Jiangxi Province

National Natural Science Foundation of China

the Chinese Scholarship Council

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3