Restoring Force Model for Composite-Shear Wall with Concealed Bracings in Steel-Tube Frame

Author:

Wei Ding,Suizi Jia

Abstract

Establishing a restoring force model is a fundamental yet critical task for the analysis of structural responses to earthquakes. Such a model has a substantial impact on the structural analysis results. Composite-shear walls with concealed bracings in steel-tube frames (composite-shear walls) offer several advantages, including convenient construction processes, high-bearing capacity, and excellent ductility. In this study, the mechanical properties of virtual test pieces were simulated when subjected to low-cyclic-reversed loading in ABAQUS. The simulation results agreed well with the experimental results. Subsequently, 24 additional virtual test pieces were obtained by adjusting the parameters of the original four test pieces, including the strength of the recycled concrete, thickness of the wallboard, and axial compression ratio. Finally, the restoring force model was validated using the experimental test results from our previous study. The results demonstrate the excellent performance of the proposed restoring force model in simulating the mechanical response of a composite shear wall. In particular, this model can accurately reflect the restoring force characteristics of the composite shear wall explored in this study. The restoring force model provides an effective theoretical support for the analysis of the elastoplastic seismic response of similar types of structures.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3