EXPERIMENTAL METHOD FOR STRUCTURAL CONCRETE DAMPING PROPERTIES EVALUATION

Author:

Smirnov Vladimir,Smolyakov Michail

Abstract

This article proposes a solution for structural materials such as concrete and cement mortars dynamic properties investigation using experimental modal analysis technique. The studied dynamic characteristics of structural materials include the dynamic modulus of elasticity and the loss factor or its derivatives: the logarithmic oscillation decrement or the relative damping coefficient. Closed expressions are presented for determining the loss factor of mechanical vibrations, obtained on the basis of solving the differential equation for vibrations of a single-mass dynamic system. A method for calculating the loss factor based on the analysis of the spectrum of the transfer function of an oscillatory system loaded with an impulsive dynamic force is presented, in which the results of measuring accelerations at various points of the sample are used as a response. The experiments were carried out on short and long samples made from samples of structural materials - cement mortars with a density of 1500 - 1900 kg/m3 with special aggregates. Based on the solution of the equation of oscillations of a beam with distributed masses, a formula is presented for determining the dynamic modulus of elasticity of the beam material.

Publisher

Publishing House ASV (Izdatelstvo ASV)

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering,Computational Mechanics

Reference16 articles.

1. Ahid D. Nashif and David I. G. Jones. Vibration damping.Wiley, 1991 – 480 p.

2. Rossikhin Yu.A, Shitikova M.V. (2014b) Nonlinear dynamic response of a thin plate embedded in a fractional viscoelastic medium under combinational internal resonances. Appl Mech Mat 595: 105—110

3. Rossikhin Yu.A., Shitikova M.V. (1998) Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges. ASCE J Eng Mech 124:1029—1036А.

4. M. Neville. properties of concrete. Abridged translation from English tech. Sciences V. D. PARFENOVA and T. Yu. YAKUB. Publishing house of literature on construction. M.: - 1972, 345 pages.

5. Inozemtsev A.S., Korolev E.V. Deformations of high-strength lightweight concretes on hollow microspheres and a way to reduce them // Stroitelnye materialy. 2015. No. 9. pp. 23-30.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verification of the three-parameter nonlocal-in-time damping model by experimental data;2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES);2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3