Capturing the free energy of transition state stabilization: insights from the inhibition of mandelate racemase

Author:

Bearne Stephen L.12ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2

2. Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2

Abstract

Mandelate racemase (MR) catalyses the Mg2+-dependent interconversion of (R)- and (S)-mandelate. To effect catalysis, MR stabilizes the altered substrate in the transition state (TS) by approximately 26 kcal mol–1(–ΔGtx), such that the upper limit of the virtual dissociation constant of the enzyme-TS complex is 2 × 10–19M. Designing TS analogue inhibitors that capture a significant amount of ΔGtxfor binding presents a challenge since there are a limited number of protein binding determinants that interact with the substrate and the structural simplicity of mandelate constrains the number of possible isostructural variations. Indeed, current intermediate/TS analogue inhibitors of MR capture less than or equal to 30% of ΔGtxbecause they fail to fully capitalize on electrostatic interactions with the metal ion, and the strength and number of all available electrostatic and H-bond interactions with binding determinants present at the TS. Surprisingly, phenylboronic acid (PBA), 2-formyl-PBA, andpara-chloro-PBA capture 31–38% of ΔGtx. The boronic acid group interacts with the Mg2+ion and multiple binding determinants that effect TS stabilization. Inhibitors capable of forming multiple interactions can exploit the cooperative interactions that contribute to optimum binding of the TS. Hence, maximizing interactions with multiple binding determinants is integral to effective TS analogue inhibitor design.This article is part of the theme issue ‘Reactivity and mechanism in chemical and synthetic biology’.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3