Reactivity and mechanism in chemical and synthetic biology

Author:

Richards Nigel G. J.12ORCID,Bearne Stephen L.34ORCID,Goto Yuki5,Parker Emily J.6ORCID

Affiliation:

1. School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK

2. Foundation for Advanced Molecular Evolution, 13709 Progress Boulevard, Alachua, FL 32615, USA

3. Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2

4. Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4R2

5. Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

6. Department of Chemistry, Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand

Abstract

Physical organic chemistry and mechanistic thinking provide a strong intellectual framework for understanding the chemical logic of evolvable informational macromolecules and metabolic transformations in living organisms. These concepts have also led to numerous successes in designing and applying tools to delineate biological function in health and disease, chemical ecology and possible alternative chemistries employed by extraterrestrial life. A symposium at the 2020 Pacifichem meeting was scheduled in December 2020 to discuss designing and exploiting expanded genetic alphabets, methods to understand the biosynthesis of natural products and re-engineering primary metabolism in bacteria. The COVID-19 pandemic led to postponement of in-person discussions, with the symposium eventually being held on 20–21 December 2021 as an online event. This issue is a written record of work presented on biosynthetic pathways and enzyme catalysis, engineering microorganisms with new metabolic capabilities, and the synthesis of non-canonical, nucleobases for medical applications and for studies of alternate chemistries for living organisms. The variety of opinion pieces, reviews and original research articles provide a starting point for innovations that clarify how complex biological systems emerge from the rules of chemical reactivity and mechanism.This article is part of the themed issue ‘Reactivity and mechanism in chemical and synthetic biology’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3