Groundfish biodiversity change in northeastern Pacific waters under projected warming and deoxygenation

Author:

Thompson Patrick L.12ORCID,Nephin Jessica1,Davies Sarah C.3,Park Ashley E.1,Lyons Devin A.4,Rooper Christopher N.3,Angelica Peña M.1,Christian James R.1,Hunter Karen L.3,Rubidge Emily15ORCID,Holdsworth Amber M.1

Affiliation:

1. Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5

2. Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

3. Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada V9T 6N7

4. Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada B2Y 4A2

5. Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

Abstract

In the coming decades, warming and deoxygenation of marine waters are anticipated to result in shifts in the distribution and abundance of fishes, with consequences for the diversity and composition of fish communities. Here, we combine fisheries-independent trawl survey data spanning the west coast of the USA and Canada with high-resolution regional ocean models to make projections of how 34 groundfish species will be impacted by changes in temperature and oxygen in British Columbia (BC) and Washington. In this region, species that are projected to decrease in occurrence are roughly balanced by those that are projected to increase, resulting in considerable compositional turnover. Many, but not all, species are projected to shift to deeper depths as conditions warm, but low oxygen will limit how deep they can go. Thus, biodiversity will likely decrease in the shallowest waters (less than 100 m), where warming will be greatest, increase at mid-depths (100–600 m) as shallow species shift deeper, and decrease at depths where oxygen is limited (greater than 600 m). These results highlight the critical importance of accounting for the joint role of temperature, oxygen and depth when projecting the impacts of climate change on marine biodiversity. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3