Implication of lipid turnover for the control of energy balance

Author:

Bernard S.1ORCID,Spalding K. L.2ORCID

Affiliation:

1. Institut Camille Jordan, CNRS, University of Lyon and Inria, Villeurbanne, 69603, France

2. Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 17177, Sweden

Abstract

The ongoing obesity epidemic is a consequence of a progressive energy imbalance. The energy-balance model (EBM) posits that obesity results from an excess in food intake and circulating fuels. A reversal in causality has been proposed recently in the form of the carbohydrate–insulin model (CIM), according to which fat storage drives energy imbalance. Under the CIM, dietary carbohydrates shift energy use in favour of storage in adipose tissue. The dynamics of lipid storage and mobilization could, therefore, be sensitive to changes in carbohydrate intake and represent a measurable component of the CIM. To characterize potential changes in lipid dynamics induced by carbohydrates, mathematical models were used. Here, we propose a coherent mathematical implementation of the CIM-energy deposition model (CIM-EDM), which includes lipid turnover dynamics. Using lipid turnover data previously obtained by radiocarbon dating, we build two cohorts of virtual patients and simulate lipid dynamics during ageing and weight loss. We identify clinically testable lipid dynamic parameters that discriminate between the CIM-EDM and an energy in, energy out implementation of the EBM (EBM-IOM). Using a clinically relevant two-month virtual trial, we additionally identify scenarios and propose mechanisms whereby individuals may respond differently to low-carbohydrate diets. This article is part of a discussion meeting issue ‘Causes of obesity: theories, conjectures and evidence (Part II)’.

Funder

Knut och Alice Wallenbergs Stiftelse

Institut rhônalpin des systèmes complexes

Novo Nordisk Fonden

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trapped fat: Obesity pathogenesis as an intrinsic disorder in metabolic fuel partitioning;Obesity Reviews;2024-07-03

2. Implication of lipid turnover for the control of energy balance;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3