Affiliation:
1. Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands
Abstract
Accurate phenotype prediction based on genetic information has numerous societal applications, such as crop design or cellular factories. Epistasis, when biological components interact, complicates modelling phenotypes from genotypes. Here we show an approach to mitigate this complication for polarity establishment in budding yeast, where mechanistic information is abundant. We coarse-grain molecular interactions into a so-called mesotype, which we combine with gene expression noise into a physical cell cycle model. First, we show with computer simulations that the mesotype allows validation of the most current biochemical polarity models by quantitatively matching doubling times. Second, the mesotype elucidates epistasis emergence as exemplified by evaluating the predicted mutational effect of key polarity protein Bem1p when combined with known interactors or under different growth conditions. This example also illustrates how unlikely evolutionary trajectories can become more accessible. The tractability of our biophysically justifiable approach inspires a road-map towards bottom-up modelling complementary to statistical inferences.This article is part of the theme issue ‘Interdisciplinary approaches to predicting evolutionary biology’.
Funder
H2020 European Research Council
NWO/OCW
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献