Simultaneous assessment of radial and axial myocyte mechanics by combining atomic force microscopy and carbon fibre techniques

Author:

Peyronnet Rémi123ORCID,Desai Aesha4,Edelmann Jan-Christoph3,Cameron Breanne A.12,Emig Ramona125ORCID,Kohl Peter1235,Dean Delphine4ORCID

Affiliation:

1. Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg – Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany

2. Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany

3. National Heart and Lung Institute, Imperial College London, London, UK

4. Clemson University, Clemson, SC, USA

5. CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany

Abstract

Cardiomyocytes sense and shape their mechanical environment, contributing to its dynamics by their passive and active mechanical properties. While axial forces generated by contracting cardiomyocytes have been amply investigated, the corresponding radial mechanics remain poorly characterized. Our aim is to simultaneously monitor passive and active forces, both axially and radially, in cardiomyocytes freshly isolated from adult mouse ventricles. To do so, we combine a carbon fibre (CF) set-up with a custom-made atomic force microscope (AFM). CF allows us to apply stretch and to record passive and active forces in the axial direction. The AFM, modified for frontal access to fit in CF, is used to characterize radial cell mechanics. We show that stretch increases the radial elastic modulus of cardiomyocytes. We further find that during contraction, cardiomyocytes generate radial forces that are reduced, but not abolished, when cells are forced to contract near isometrically. Radial forces may contribute to ventricular wall thickening during contraction, together with the dynamic re-orientation of cells and sheetlets in the myocardium. This new approach for characterizing cell mechanics allows one to obtain a more detailed picture of the balance of axial and radial mechanics in cardiomyocytes at rest, during stretch, and during contraction. This article is part of the theme issue ‘The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease’.

Funder

ERC Advanced grant

NSF-ERC

NSF

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3