Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load

Author:

Iribe Gentaro,Helmes Michiel,Kohl Peter

Abstract

We developed a dynamic force-length (FL) control system for single intact cardiomyocytes that uses a pair of compliant, computer-controlled, and piezo translator (PZT)-positioned carbon fibers (CF). CF are attached to opposite cell ends to afford dynamic and bidirectional control of the cell's mechanical environment. PZT and CF tip positions, as well as sarcomere length (SL), are simultaneously monitored in real time, and passive/active forces are calculated from CF bending. Cell force and length were dynamically adjusted by corresponding changes in PZT position, to achieve isometric, isotonic, or work-loop style contractions. Functionality of the technique was assessed by studying FL behavior of guinea pig intact cardiomyocytes. End-diastolic and end-systolic FL relations, obtained with varying preload and/or afterloads, were near linear, independent of the mode of contraction, and overlapping for the range of end-diastolic SLs tested (1.85–2.05 μm). Instantaneous elastance curves, obtained from FL relation curves, showed an afterload-dependent decrease in time to peak elastance and slowed relaxation with both increased preload and afterload. The ability of the present system to independently and dynamically control preload, afterload, and transition between end-diastolic and end-systolic FL coordinates provides a valuable extension to the range of tools available for the study of single cardiomyocyte mechanics, to foster its interrelation with whole heart pathophysiology.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3