The upper branch stability of the Blasius boundary layer, including non-parallel flow effects

Author:

Abstract

The stability of the Blasius boundary layer is studied theoretically, with the aim of fixing the character of the upper branch of the neutral stability curve(s) and its dependence on non-parallel flow effects. Unlike most previous studies this work has a rational basis since, throughout, we consider the linear stability structure for asymptotically large Reynolds numbers ( Re ). The structure is five-zoned and quite complicated, more so than the structure (discussed in Smith (1979 a )) governing the lower branch stability properties, but nevertheless it lends itself to the systematic determination of the neutral frequency and of the influence of non-parallelism. The four leading terms in the asymptotic expansion of the neutral frequency are determined and then the non-parallel flow effects are considered. The latter are shown to be of relative order Re -3/10 in general, much larger than the relative order Re -1/2 suggested by the parallel flow approximations used extensively in the literature. The cause of this discrepancy lies partly in the relatively large wavelength of the Tollmien-Schlichting modes but, more especially, in a ‘transmission feature’, associated with the stability structure and brought about by the major determining role played by the small curvature of the boundary layer profile at the critical layer. This transmission feature enables even quite small effects in the disturbance velocity field to produce a much more profound effect in the neutral stability criteria. The results of this study are not inconsistent overall with previous numerical work but they do tend to suggest that linear non-parallel flow stability theory may well explain most of the related experimental observations, even near the critical Reynolds number.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference2 articles.

1. B outliier M. 1973

2. J;Mec.,1975

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear stability of a compressible flow in a channel;Quarterly Journal of Mechanics and Applied Mathematics;2023-12-20

2. Linear stability analysis of compressible pipe flow;Theoretical and Computational Fluid Dynamics;2023-07-24

3. Asymptotic study of linear instability in a viscoelastic pipe flow;Journal of Fluid Mechanics;2022-01-31

4. The triple-deck stage of marginal separation;Journal of Engineering Mathematics;2021-06

5. Nonlinear Theories for Shear Flow Instabilities: Physical Insights and Practical Implications;Annual Review of Fluid Mechanics;2019-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3