The triple-deck stage of marginal separation

Author:

Braun StefanORCID,Scheichl Stefan,Kuzdas Dominik

Abstract

AbstractThe method of matched asymptotic expansions is applied to the investigation of transitional separation bubbles. The problem-specific Reynolds number is assumed to be large and acts as the primary perturbation parameter. Four subsequent stages can be identified as playing key roles in the characterization of the incipient laminar–turbulent transition process: due to the action of an adverse pressure gradient, a classical laminar boundary layer is forced to separate marginally (I). Taking into account viscous–inviscid interaction then enables the description of localized, predominantly steady, reverse flow regions (II). However, certain conditions (e.g. imposed perturbations) may lead to a finite-time breakdown of the underlying reduced set of equations. The ensuing consideration of even shorter spatio-temporal scales results in the flow being governed by another triple-deck interaction. This model is capable of both resolving the finite-time singularity and reproducing the spike formation (III) that, as known from experimental observations and direct numerical simulations, sets in prior to vortex shedding at the rear of the bubble. Usually, the triple-deck stage again terminates in the form of a finite-time blow-up. The study of this event gives rise to a noninteracting Euler–Prandtl stage (IV) associated with unsteady separation, where the vortex wind-up and shedding process takes place. The focus of the present paper lies on the triple-deck stage III and is twofold: firstly, a comprehensive numerical investigation based on a Chebyshev collocation method is presented. Secondly, a composite asymptotic model for the regularization of the ill-posed Cauchy problem is developed.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The classical unsteady boundary layer: A numerical study;PAMM;2023-09-15

2. In memoriam: Alfred Kluwick (1942–2022);Zeitschrift für angewandte Mathematik und Physik;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3