Asymptotic study of linear instability in a viscoelastic pipe flow

Author:

Dong MingORCID,Zhang MengqiORCID

Abstract

It is recently found that viscoelastic pipe flows can be linearly unstable, leading to the possibility of a supercritical transition route, in contrast to Newtonian pipe flows. Such an instability is referred to as the centre mode, which was studied numerically by Chaudharyet al.(J. Fluid Mech., vol. 908, 2021, p. A11) based on an Oldroyd-B model. In this paper, we are interested in expanding the parameter space investigated and exploring the asymptotic scalings related to this centre instability in the Oldroyd-B viscoelastic pipe flow. It is found from the asymptotic analysis that the centre mode exhibits a three-layered asymptotic structure in the radial direction, a wall layer, a main layer and a central layer, which are driven by pure viscosity, axial and/or radial pressure gradient, and a combined effect of viscosity and elasticity, respectively. Depending on the relations of the control parameters, two regimes, the long-wavelength and short-wavelength centre instabilities, emerge, for which the central-layer thicknesses are of different orders of magnitude. Our large-Reynolds-number asymptotic predictions are compared to the numerical solutions of the original eigenvalue system, and favourable agreement is achieved, especially when the parameters approach their individual limits. In addition to revealing the dominant factors and their balances, the asymptotic analysis describes the instability system by reducing the number of control parameters, and furthermore explaining the collapse of the numerical results for different re-scalings.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3