Investigation of Microwave Annealing on Resistive Random Access Memory Device with Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition Deposited IGZO Layer

Author:

Wu Chien-Hung1,Kuo Song-Nian2,Chang Kow-Ming2,Chen Yi-Ming2,Zhang Yu-Xin3,Xu Ni4,Liu Wu-Yang2,Chin Albert2

Affiliation:

1. Department of Optoelectronics and Materials Engineering, Chung Hua University, Hsinchu 30012, Taiwan, R.O.C

2. Institute of Electronics Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C

3. College of Electrical and Computing Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C

4. Department of Business Administration, National Central University, Taoyuan 32001, Taiwan, R.O.C

Abstract

Non-volatile memory (NVM) is essential in almost every consumer electronic products. The most prevalent NVM used nowadays is flash memory (Meena, J.S., et al., 2014. Overview of emerging nonvolatile memory technologies. Nanoscale Res. Letters, 9(1), p.526). However, some bottlenecks of flash memory have been identified, such as high operation voltage, low operation speed, and poor retention time. Resistive random access memory (RRAM) is considered to be the most promising one to become the next generation NVM device since its simple structure, fast program/erase speed, and low power consumption. In this experiment, the RRAM device is fabricated, and its IGZO (memory) layer is deposited with AP-PECVD technique which can reduce cost of the process. Microwave annealing (MWA) is used to enhance electrical characteristics of the RRAM device (Fuh, C.S., et al., 2011. Role of environmental and annealing conditions on the passivation-free In–Ga– Zn–O TFT. Thin Solid Films, 520, pp.1489–1494). Experiment results show that with appropriate MWA treatment, the IGZO RRAM device exhibits better electrical characteristics under bipolar operation, all forming/set/reset voltage for RRAM device is simultaneously lowered.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3