Structural and Optical Properties of GaN Film on Copper and Graphene/Copper Metal Foils Grown by Laser Molecular Beam Epitaxy

Author:

Ramesh C.1,Tyagi P.1,Bera S.2,Gautam S.1,Subhedar Kiran M.1,Senthil Kumar M.1,Kushvaha Sunil S.1

Affiliation:

1. CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India

2. Indian Institute of Science Education and Research (IISER), Berhampur 760010, India

Abstract

We report the direct growth of crystalline GaN on bare copper (Cu) and monolayer-graphene/Cu metal foils using laser molecular beam epitaxy technique at growth temperature of 700 °C. The surface morphology investigated with field emission scanning electron microscopy revealed that the size of GaN grains for film grown on bare Cu falls in range of 90 to 160 nm whereas large grains with size of ˜200 to 600 nm was obtained for GaN grown on graphene/Cu foil under similar growth condition. The transverse optical mode of cubic GaN and E2 (high) phonon mode for wurtzite GaN phases were obtained on the GaN film grown on Cu and graphene/Cu metal foils as deduced by Raman spectroscopy. The photoluminescence (PL) spectroscopy studies showed that the near band edge emission peaks for GaN on Cu and graphene/Cu consist two major peaks at 3.26 and 3.4 eV, corresponding to cubic and wurtzite GaN, respectively. The Raman and PL studies disclosed that the mixed phase growth of GaN occurs on these foils and better structural and optical quality for GaN on graphene/Cu foil. The direct growth of GaN on two dimensional graphene on polycrystalline metal foils is beneficial various transferrable and flexible opto-electronics device applications.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3