Mirna-218 Inhibits Inflammatory Reaction After Rat Cervical Spinal Cord Injury by Targeting Signal Transducer and Activator of Transcription-3

Author:

Muheremu Aikeremujiang1,Yakufu Maihemuti2,Jiang Junyao3,Li Shu4,Aili Abudunaibi1

Affiliation:

1. Department of Spine Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Urumqi, Xinjiang 86830001, China

2. Center of Orthopaedic Research, Department of Orthopaedics, Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Urumqi, Xinjiang 86830001, China

3. Class of 1806 Clinical Medicine, School of Basic Medical Sciences, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luolong District, Luoyang, Henan 86471023, China

4. Department of Orthopaedics, Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Urumqi, Xinjiang 86830001, China

Abstract

To find if the overexpression of microrna-218 can be used to treat SCI, here we divided 80 SD rats into control, SCI, overexpression and silencing groups, each with 20 rats. BBB score and combined behavior scores were used to evaluate the motor function under the SCI level. Expression of IL-1, IL-6, IL-23, STAT3 as well as p-STAT3 was measured. 8 weeks after surgery, over-expression group showed higher BBB score than controls (P < 0.05), while the CBS score was lower in overexpression group than control groups (P < 0.05). The expression of IL-1, IL-6 and IL-23 in the over expression group was lower than the SCI and silencing groups. Levels of IL-17mrna, STAT3 and phosphorylated STAT3 were higher in the over expression group than control groups, but lower than rats in SCI and silencing groups (P < 0.05). In conclusion, mirna-218 can prevent the overexpression of inflammatory factors by inhibiting the expression of STAT3, reducing secondary injury and promoting functional rehabilitation in rats after SCI.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3