Abstract
STAT3 is a transcription factor that plays central roles in various physiological processes, including differentiation of Th cells. Its deregulation results in serious diseases, including inflammatory diseases and cancer. The mechanisms related to how STAT3 activity is regulated remain enigmatic. Here we show that overexpression of FAM64A potentiates IL-6–induced activation of STAT3 and expression of downstream target genes, whereas deficiency of FAM64A has the opposite effects. FAM64A interacts with STAT3 in the nucleus and regulates binding of STAT3 to the promoters of its target genes. Deficiency of Fam64a significantly impairs differentiation of Th17 but not Th1 or induced regulatory T cells (iTreg). In addition, Fam64a deficiency attenuates experimental autoimmune encephalomyelitis (EAE) and dextran sulfate sodium (DSS)-induced colitis, which is correlated with decreased differentiation of Th17 cells and production of proinflammatory cytokines. Furthermore, Fam64a deficiency suppresses azoxymethane (AOM)/DSS-induced colitis-associated cancer (CAC) in mice. These findings suggest that FAM64A regulates Th17 differentiation and colitis and inflammation-associated cancer by modulating transcriptional activity of STAT3.
Funder
China National Funds for Distinguished Young Scientists
National Natural Science Foundation of China
National Key R&D Program of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献