The glycolytic reaction PGAM unexpectedly restrains Th17 pathogenicity and Th17-dependent autoimmunity

Author:

Wang Chao,Wagner AllonORCID,Fessler Johannes,DeTomaso David,Zaghouani Sarah,Zhou Yulin,Pierce Kerry,Sobel Raymond A.,Clish Clary,Yosef Nir,Kuchroo Vijay K.

Abstract

ABSTRACTGlucose metabolism is a critical regulator of T cell function, largely thought to support their activation and effector differentiation. Here, we investigate the relevance of individual glycolytic reactions in determining the pathogenicity of T helper 17 (Th17) cells using single-cell RNA-seq and Compass, an algorithm we previously developed for estimating metabolic flux from single-cell transcriptomes. Surprisingly, Compass predicted that the metabolic shunt between 3-phosphoglycerate (3PG) and 2-phosphoglycerate (2PG) is inversely correlated with pathogenicity in these cells, whereas both its upstream and downstream reactions were positively correlated. Perturbation of phosphoglycerate mutase (PGAM), an enzyme required for 3PG to 2PG conversion, resulted in an increase in protein expression of IL2, IL17, and TNFa, as well as induction of a pathogenic gene expression program. Consistent with PGAM playing a pro-regulatory role, inhibiting PGAM in Th17 cells resulted in exacerbated autoimmune responses in the adoptive transfer model of experimental autoimmune encephalomyelitis (EAE). Finally, we further investigated the effects of modulating glucose concentration on Th17 cells in culture. Th17 cells differentiated under high- and low-glucose conditions substantially differed in their metabolic and effector transcriptomic programs, both central to Th17 function. Importantly, the PGAM-dependent gene module marks the least pathogenic state of Th17 cells irrespective of glucose concentration. Overall, our study identifies PGAM, contrary to other glycolytic enzymes, as a negative regulator of Th17 pathogenicity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3