Affiliation:
1. Zunyi Normal College, Zunyi, 563006, China
Abstract
In this study, the crystal structure as well as electron transport of TiN thin films were evaluated. We used DC reactive magnetron sputtering to deposit a thin layer of polycrystalline titanium nitride (TiN) on a Si (100) substrate starting from elemental Ti in a nitrogen atmosphere.
The influence of nitrogen flow rate on the crystal structure, surface morphology, and electron transport of TiN were investigated systematically. It was found that the preferred orientation and conductivity of TiN thin films exhibit strong nitrogen flow rate dependence. The preferred orientation
changed from (111) to (200) initially and then changed back to (111) as the nitrogen flow rate increases. However, an increase in the (200) phase leads to higher conductivity and lower surface roughness. At the optimized deposition conditions, ultra-thin (around 30 nm) TiN thin films with
a low resistivity of 101.8 μC·cm and a surface roughness of less than or equal to 0.51 nm were obtained. These superior performances, along with low running costs, suggest that TiN thin films have great potential for use as electrodes in microelectronic devices.
Publisher
American Scientific Publishers
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献