Author:
Seo Jae Hwa,Yoon Young Jun,Cho Seongjae,Tae Heung-Sik,Lee Jung-Hee,Kang In Man
Abstract
The In0.53Ga0.47As-based planar-type junctionless fieled-effect transistor (JLFET) and fin-type FET (FinFET) have been designed and characterized by technology computer-aided design (TCAD) simulations. Because of their attractive material characteristics, the combination
of In0.53Ga0.47As and InP has been adopted in some of the most recent semiconductor devices. In particular, the In0.53Ga0.47As-based transistor using an InP buffer is highly attractive due to its superior electrostatic performance which results from
the by particular characteristics of the In0.53Ga0.47As material. In this paper, we focus on using small-signal RF modeling and Y-parameter extraction methods th extract various RF characteristics, such as gate capacitance, transconductance (gm), cut-off
frequency (fT), and maximum oscillation frequency (fmax). The proposed In0.53Ga0.47As-based FinFET exhibits an on-state current (Ion) of 1030 μA/μm and an off-state current (Ioff)
of 1.2×10−13 A/μm with a threshold voltage (Vth) of 0.1 V, and a subthreshold swing (S) of 96 mV/dec. In addition, fT and fmax are determined to be 243 GHz and 1.6 THz, respectively.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献