Myricetin-Based Self-Assembled Nanoparticles for Tumor Synergistic Therapy by Antioxidation Pathway

Author:

Qian Yumei1,Zhao Fang1,Wang Jing1,Li Hongxia1,Xu Lisheng1,Wang Weiwei1,Yu Weixiong2,Shan Lingling1

Affiliation:

1. Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People’s Republic of China

2. Anhui Xinximeng Biological Technology Co., Ltd., Suzhou 234000, People’s Republic of China

Abstract

Nanoplatforms are nano-scale systems that can transport different small molecular anticancer drugs or chemosensitization motif to accumulate in tumor cells without obvious side-effect in normal cells and achieve a synergistic therapy. In this paper the new self-assembled nanoparticles (NPs) merging doxorubicin (DOX) and myricetin (MYR) with ferric ions (Fe3+) and polyphenol was employed for forming the DOX@MYR-Fe3+ NP (FDMP NP). The FDMP NPs could reduce the DOX-induced toxicity in blood; and they could not cause damage to the heart and kidney tissues by the reasons that the MYR could enhance the anti-oxidation capability in normal cells, which resulted in preventing ROS-induced damage. Additionally, the FDMP NPs were characteristic of small size (37.70 ± 6.30 nm), high DOX loading efficiency (46.67 ± 1.58%), pH-controlled release and excellent stable pharmacokinetics, that inducing drug release and enhancing drug accumulation in the tumor. Moreover, the FDMP NPs could inhibit the expression of the hypoxia-inducible factor-1 α(HIF-1α) and the key angiogenesis mediator vascular endothelial growth factor (VEGF) both in vitro and in vivo, which succeed in preventing the generation of new blood vessel networks; that is the mechanism of the synergistic effect against tumors induced by FDMP NPs.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3