Tumor acidification and GSH depletion by bimetallic composite nanoparticles for enhanced chemodynamic therapy of TNBC

Author:

Chen Wenting,Hu Fangfang,Gao Qian,Zheng Caiyun,Bai Que,Liu Jinxi,Sun Na,Zhang Wenhui,Zhang Yanni,Dong Kai,Lu Tingli

Abstract

AbstractChemodynamic therapy (CDT) based on intracellular Fenton reaction to produce highly cytotoxic reactive oxygen species (ROS) has played an essential role in tumor therapy. However, this therapy still needs to be improved by weakly acidic pH and over-expression of glutathione (GSH) in tumor microenvironment (TEM), which hinders its future application. Herein, we reported a multifunctional bimetallic composite nanoparticle MnO2@GA-Fe@CAI based on a metal polyphenol network (MPN) structure, which could reduce intracellular pH and endogenous GSH by remodeling tumor microenvironment to improve Fenton activity. MnO2 nanoparticles were prepared first and MnO2@GA-Fe nanoparticles with Fe3+ as central ion and gallic acid (GA) as surface ligands were prepared by the chelation reaction. Then, carbonic anhydrase inhibitor (CAI) was coupled with GA to form MnO2@GA-Fe@CAI. The properties of the bimetallic composite nanoparticles were studied, and the results showed that CAI could reduce intracellular pH. At the same time, MnO2 could deplete intracellular GSH and produce Mn2+ via redox reactions, which re-established the TME with low pH and GSH. In addition, GA reduced Fe3+ to Fe2+. Mn2+ and Fe2+ catalyzed the endogenous H2O2 to produce high-lever ROS to kill tumor cells. Compared with MnO2, MnO2@GA-Fe@CAI could reduce the tumor weight and volume for the xenograft MDA-MB-231 tumor-bearing mice and the final tumor inhibition rate of 58.09 ± 5.77%, showing the improved therapeutic effect as well as the biological safety. Therefore, this study achieved the high-efficiency CDT effect catalyzed by bimetallic through reshaping the tumor microenvironment. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3