Effect of Nano-Particle on Durability of Polyvinyl Alcohol Fiber Reinforced Cementitious Composite

Author:

Zhang Peng,Li Qingfu,Wang Juan,Shi Yan,Zheng Yuanxun,Ling Yifeng

Abstract

In this study, the influence of nano-particle on flowability and durability of polyvinyl alcohol (PVA) fibers reinforced cementitious composite containing fly ash was evaluated. In the cementitious composite, Portland cement was replaced with 1.0%, 1.5%, 2.0% and 2.5% (by weight) of nano-particles. Two kinds of nano-particle of SiO2 and CaCO3 nano-particles were adopted in this study. PVA fibers were incorporated to the composite at a dosage of 0.9% (by volume). The flowability of the fresh cementitious composite was assessed using slump flow measurements. The durability of hardened cementitious composite includes carbonation resistance, permeability resistance, cracking resistance as well as freezing-thawing resistance, which were evaluated by the depth of carbonation, the water permeability height, cracking resistance ratio of the specimens, and relative dynamic elastic modulus of samples after freeze-thaw cycles, respectively. Our results showed incorporation of nano-particles had a little disadvantageous effect on flowability of PVA fiber reinforced cementitious composite, and the flowability of the fresh mixtures decreased with increases in the nano-particles content. The decrease in flowability of cementitious composite resulted by nano-SiO2 particles is more remarkable than nano-CaCO3 particles. The addition of both nano-SiO2 and nano-CaCO3 particles significantly improved the durability of PVA fiber reinforced cementitious composite. However, the improvement of nano-SiO2 on durability is much better than that of nano-CaCO3. When the amount of SiO2 nano-particle was less than 2.5%, the durability of cementitious composites increased with nano-SiO2 content. The microstructure of PVA fiber reinforced cementitious composite becomes much denser due to filler effect of nano-particle and generation of particles of hydrated products C–S–H gels. Both of SiO2 and CaCO3 nano-particle improved the microstructure of PVA fiber reinforced cementitious composite, and nano-SiO2 particles might be more beneficial for PVA fibers to play the role of reinforcement than nano-CaCO3 particles in the composites.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3