Effect of PVA fibers on durability of nano-SiO2-reinforced cement-based composites subjected to wet-thermal and chloride salt-coupled environment

Author:

Su Jia1,Zhang Peng1,Guo Jinjun1,Zheng Yuanxun1

Affiliation:

1. Yellow River Laboratory, Zhengzhou University , Zhengzhou , 450001 , China

Abstract

Abstract Marine engineering structures are often faced with complex environmental factors. It is the focus of current research to modify cement-based composites (CBCs) to achieve their high durability in complex environments such as seawater. In this study, the effect of polyvinyl alcohol (PVA) fibers on durability of nano-SiO2 (NS)-reinforced cement-based composites was investigated by simulating seawater environment and taking PVA fiber content as variable. In addition, based on the Weibull probability distribution model, the damage degree of NS and PVA fiber-reinforced cement-based composites (NFRCCs) subjected to wet-thermal and chloride salt-coupled environment (WTCSE) after 300 freeze–thawing cycles (FTCs) was predicted. The test results demonstrated that the NFRCC exhibited the most excellent durability subjected to WTCSE when the content of PVA fibers was 1.2%. Compared with the reference group only doped with NS subjected to WTCSE, its impermeability pressure increased by 150%, the chloride ion electric flux decreased by 31.71%, the compressive strength loss rate decreased by 19.00% after 125 FTC, and the compressive strength corrosion resistance coefficient of chloride salt erosion increased by 9.15% after 25 wetting–drying cycles. The predicted results of the Weibull probability distribution model indicated that the damage degree of NFRCC subjected to WTCSE after 300 FTC would not exceed 0.35. The microscopic test analysis showed that the incorporation of PVA fibers reduced the proportion of large pores and the overall porosity of NFRCC subjected to WTCSE. PVA fibers bridged microcracks while adsorbing NS and its hydration products, thus enhancing the adhesion of the substrate. This study provides a reference for the research of high-performance CBC in complex environment.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3