Fractal Analysis of Cement-Based Composite Microstructure and Its Application in Evaluation of Macroscopic Performance of Cement-Based Composites: A Review

Author:

Zhang Peng1ORCID,Ding Junyao1,Guo Jinjun1ORCID,Wang Fei1

Affiliation:

1. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China

Abstract

Cement-based composites’, as the most widely used building material, macroscopic performance significantly influences the safety of engineering structures. Meanwhile, the macroscopic properties of cement-based composites are tightly related to their microscopic structure. The complexity of cement-based composites’ microscopic structure is challenging to describe geometrically, so fractal theory is extensively applied to quantify the microscopic structure of cement-based composites. However, existing studies have not clearly defined the quantification methods for various microscopic structures in CCs, nor have they provided a comprehensive evaluation of the correlation between the fractal dimensions of different microscopic structures and macroscopic performance. So, this study categorizes the commonly used testing methods in fractal theory into three categories: particle distribution (laser granulometry, etc.), pore structure (mercury intrusion porosity, etc.), and fracture (computed tomography, etc.). It systematically establishes a detailed process for the application of testing methods, the processing of test results, model building, and fractal dimension calculation. The applicability of different fractal dimension calculation models and the range of the same fractal dimension established by different models are compared and discussed, and the advantages and disadvantages of different models are analyzed. Finally, the research delves into an in-depth analysis of the relationship between the fractal dimension of cement-based composites’ microscopic structure and its macroscopic properties, such as compressive strength, corrosion resistance, impermeability, and high-temperature resistance. The principle that affects the positive and negative correlation between fractal dimension and macroscopic performance is discussed and revealed in this study. The comprehensive review in this paper provides scholars with methods and models for quantitative research on the microscopic structural parameters of cement-based composites and offers a pathway for the non-destructive assessment of the macroscopic performance of cement-based composites.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3