Influence of PVA fibers on the durability of cementitious composites under the wet–heat–salt coupling environment

Author:

Zhang Peng1,Sun Xiaoyao1,Wei Jiandong1,Wang Juan1,Gao Zhen1

Affiliation:

1. School of Water Conservancy and Transportation, Zhengzhou University , Zhengzhou , 450001 , China

Abstract

Abstract To investigate the effects of wet–heat–salt coupling environment (WHSCE) and the content of polyvinyl alcohol (PVA) fibers on the durability of cementitious composites (CC), a series of durability tests were carried out. In this study, the salt concentration in the WHSCE was set to 5%, the temperature at 50°C, and the relative humidity at 100%. Six different contents of PVA fibers were set up in the test for exploring their effects on the durability (impermeability, chloride ion penetration resistance, freeze–thaw resistance, and chloride salt erosion resistance under dry and wet cycle conditions) of CC. The results showed that durability of CC under the WHSCE was enhanced regardless of the content of PVA fibers added. At the PVA fiber amount of 1.2%, the impermeability pressure, electric flux, mass loss rate, compressive strength loss rate, and compressive strength corrosion resistance coefficient under the WHSCE reached the optimal values. This indicated that the durability of CC was most favorable when the amount of PVA fibers was 1.2% since many engineering structures are subject to erosion by various factors in the ocean, which can inevitably affect the service life of the purchase. In this study, the effect of PVA fiber content on the durability of CC in complex environment is studied, which provides experimental data and analytical ideas for improving engineering located in the ocean, hoping to provide a theoretical basis for their subsequent application in practical engineering.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3