Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement

Author:

Golewski Grzegorz Ludwik

Abstract

<abstract> <p>This paper introduced a new concrete composites made by quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials (SCMs). The motivation is to reduce our dependency on OPC to reduce CO<sub>2</sub> emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used (FA). Moreover, silica fume (SF) and nanosilica (nS) were also used. This study utilized the following contents of SCMs used: 5% of nS; 10% of SF; 0, 15, and 25% of FA. During examinations the main mechanical properties of concrete composites, i.e. compressive strength (<italic>f</italic><sub>cm</sub>) and splitting tensile strength (<italic>f</italic><sub>ctm</sub>) were assed. The brittleness of these materials was also analysed. Based on the conducted studies, it was found that concrete composite based on quaternary blended cements, of series Mix3, has shown the best results in terms of good strength parameters, whereas the worst mechanical parameters were characterized by concrete of series Mix4. On the other hand, concrete including only SF and nS (Mix2 series) were characterized by the greatest brittleness. It was observed that <italic>f</italic><sub>cm</sub> of concrete composites for series Mix2, Mix3, and Mix4 increase of 41%, 48%, and 31% respectively compared with the concrete without additives, i.e. series Mix1. In addition, <italic>f</italic><sub>ctm</sub> also increase of 39%, 47%, and 30%, respectively, for the three series mentioned above, compared with the control concrete. Concrete of series Mix3, with high mechanical properties and demonstrating the features of quasi-plastic material, i.e. having lower brittleness, can be used in concrete and reinforced concrete structures subjected mainly to dynamic and cyclic loads. Therefore, it can be used, in the construction of foundation structures for machines and other types of structures in which the above-mentioned loads are dominant.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3