Effect of Rapid Thermal Annealing Conditions on the Specific Resistance of the Ohmic Contacts of Ti/Al/Ni/Au Metallization to the GaN/AlGaN Heterostructure

Author:

Yunik A. D.1,Solovjov J. A.1

Affiliation:

1. JSC “INTEGRAL” – “INTEGRAL” Holding Managing Company

Abstract

Effect of rapid thermal annealing conditions on the specific resistance of the ohmic contacts of Ti/Al/Ni/Au metallization with layer thicknesses of 20/120/40/40 nm to the GaN/AlGaN heterostructure with a two-dimensional electron gas on a sapphire substrate has been discovered by transmission line measurement. Rapid thermal annealing of the samples was carried out by the contact heating from the sapphire substrate side in a nitrogen atmosphere at the temperature range from 750 to 1000 °C for 30, 60, and 90 s. It has been discovered that the dependence of the specific contact resistance on the temperature contains two temperature optimums, at which the specific contact resistance of the ohmic contact is less than 1 ⋅  10–4 Ohm⋅ cm2. The appearance of the first temperature optimum is due to the decrease of the distance from the diffusion front of the low-resistance layer of intermetallic compounds formed during the rapid thermal annealing of the Ti/Al/Ni/Au metallization to the region of the two-dimensional electron gas. Outside the first temperature optimum, an increase in the specific contact resistance of up to 9 ⋅  10–3 Ohm⋅ cm2 is observed, due to the absorption of the AlGaN layer by a low-resistance layer of intermetallic compounds, which leads to the degradation of the two-dimensional electron gas under the contacts and deterioration of its conductive properties. The second temperature optimum is due to the passage of the diffusion front of the two-dimensional electron gas region and the establishment of a side contact between the low-resistance intermetallic layer and the two-dimensional electron gas, which leads to the decrease in the specific contact resistance. With an increase in the fast thermal annealing time from 30 to 90 s the shift of the interval of the first temperature optimum from 800 to 775 °C for the lower boundary and from 825 to 800 °C for the upper boundary, and for the second temperature optimum from 875 to 850 °C for the lower boundary, and from 950 to 875 °C for the upper boundary is observed, which is due to an equivalent increase in the diffusion depth of the Ti/Al/Ni/Au metallization components. The results obtained can be used in the technology for creating GaN-based products with a two-dimensional electron gas.

Publisher

Belarusian State University of Informatics and Radioelectronics

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3