Author:
Nor Alia Najihah Md Noh ,Karim Latiffah,Siti Radhiah Omar
Abstract
Conversion of agricultural residues into valuable products has become an important study in the industry. Generally, they are made up of lignocellulose biomass which requires a particular method such as pretreatment to enhance the desired yield to produce the end product. However, pumpkin is commercialized in very little way in Malaysia, and their processing generates tons of seeds and peels as byproducts. Not to mention the fact that pumpkin wastes have many beneficial nutrients and dry matter that can be utilized in many ways. Pumpkin peel is particularly rich in glucose content and can be converted through several main steps in bioethanol production; pretreatment, enzymatic saccharification, and fermentation which usually uses fungi to obtain fermentable sugar and followed by distillation. Furthermore, bioactive compounds such as carbohydrate, protein, minerals, fatty acid and a significant value on antioxidant compounds like tocopherol, phenols and carotenes are also found in pumpkin seed. On top of that, pumpkin seeds and peels contain quite an amount of pectin that can be extracted through acid hydrolysis and have great potential as gelling agents and thickeners in the food industry as an alternative source from the commercial pectin. These have proven that the usage of pumpkin residuals not only it can provide good benefits to human, in fact, various valuable products can be produced in a cheaper and sustainable way.
Publisher
Universiti Sains Islam Malaysia
Reference37 articles.
1. Guilherme, A. A., P. V. F. Dantas, E. S. Santos, Fabiano AN Fernandes, and Gorete Ribeiro de Macedo. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Brazilian Journal of Chemical Engineering 32 (2015): 23-33. doi: /10.1590/0104-6632.20150321s00003146
2. Yok, Margaret Chan Kit, Seraphina Anak Dominic Gisong, Beatrice Anak Modon, and Rogaya Rusim. Creating new market in integrated agriculture development area in Samarahan, Sarawak, Malaysia–Case study in the supply chain of Cucurbita sp.(Pumpkin). Procedia-Social and Behavioral Sciences 224 (2016): 516-522. doi: 10.1016/j.sbspro.2016.05.428
3. Norshazila, S., Irwandi, J., Othman, R., & Yumi Zuhanis, H. H. “Carotenoid content in different locality of pumpkin (Cucurbita moschata) in Malaysia,” Int. J. Pharm. Pharm. Sci., vol. 6, no. SUPPL. 3, pp. 29–32, 2014.
4. Nwajiobi, C. C., J. O. E. Otaigbe, and O. Oriji. A comparative study of microcrystalline cellulose isolated from the pod husk and stalk of fluted pumpkin. Chemical Science International Journal 25, no. 4 (2018): 1-11. doi: 10.9734/CSJI/2018/v25i430074
5. Kamarubahrin A. F., Harris, A., Abdul Shukor, S., Mohd Daud, S. N., Ahmad, N., Kefli, Z., Muhamed, N. A., Shukor, S.A., “The potential of pumpkin (Cucurbita Moschata Duschene) as commercial crop in Malaysia,” The Pertanika Journal of Scholarly Research Reviews., vol. 4, no. 3, pp. 1-10, 2018.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献