Engineering FeOOH/Fe2O3@Carbon Interfaces With Biomass‐Derived Carbon Nanodot/Iron Colloids for Efficient Redox‐Modulated Dopamine Voltammetric Detection

Author:

Guye Meseret Ethiopia1,Appiah‐Ntiamoah Richard1ORCID,Dabaro Mintesinot Dessalegn1,Kim Hern1ORCID

Affiliation:

1. Department of Energy Science and Technology Environmental Waste Recycle Institute Myongji University, Yongin Gyeonggi-do 17058 Republic of Korea

Abstract

AbstractThe Fe2+/Fe3+ redox couple is effective for voltammetric detection of trace dopamine (DA). However, achieving adequate concentrations with high electroactive surface area (ECSA), DA affinity, and fast interfacial charge transfer is challenging. Consequently, most reported Fe‐based sensors have a high nanomolar range detection limit (LOD). Herein, we address these limitations by manipulating the phase and morphology of FeOOH/Fe2O3 heterojunctions anchored on sp2‐carbon. FeOOH/Fe2O3 is synthesized by variable temperature aging of unique Fe5H9O15/Fe2O3@sp2‐carbon colloidal nanoparticles, which form via chelation between biomass‐derived carbon nanodots (CNDs) and Fe2+ ions. At 27 °C and 120 °C, Fe5H9O15/Fe2O3@sp2‐carbon transforms into β‐FeOOH/Fe2O3 nanoparticles and α‐FeOOH/Fe2O3 nanosheet, respectively. The β‐FeOOH/Fe2O3 interface exhibits higher eg orbital electron occupancy than α‐FeOOH/Fe2O3, thereby facilitating oxygen adsorption and the generation of Fe2+/Fe3+ sites near the polarization potential of DA. This facilitates interfacial electron transfer between Fe3+ and DA. Moreover, its nanoparticle morphology enhances ECSA and DA adsorption compared to α‐FeOOH/Fe2O3 nanosheets. With a LOD of ~3.11 nM, β‐FeOOH/Fe2O3 surpasses the lower threshold in humans (~10 nM) and matches noble‐metal sensors. Furthermore, it exhibits selective detection of DA over 10 biochemicals in urine. Therefore, the β‐FeOOH/Fe2O3@sp2‐C platform holds promise as a low‐cost, easy‐to‐synthesize, and practical voltammetric DA monitor.

Funder

Ministry of Higher Education and Scientific Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3