THE EFFECT OF MATERIAL MODELS IN THE FEM SIMULATION ON THE SPRINGBACK PREDICTION OF THE TRIP STEEL

Author:

Mulidrán PeterORCID,Spišák Emil,Tomáš MiroslavORCID,Majerníková JankaORCID,Varga JánORCID

Abstract

In this work, the influence of material models used in the FEM simulation on the springback prediction is investigated. The interest of this paper is to extend the knowledge base regarding springback predictions in numerical simulation. The springback effect of a V-shaped sheet metal part made of TRIP steel, with a thickness of 0.75 mm was investigated. The bending angle was set to 90°.  In the numerical simulation, Hill48 and Barlat yield criteria were used in combination with Ludwik's and Swift's hardening models. Achieved data from the numerical simulations were compared and evaluated with experimental test results. The experimental results showed the relation between springback and calibration force. The effect of specimen cut direction on the springback was smaller in comparison with the calibration force. The numerical results of the springback were not identical with the experimentally achieved springback values in most cases. Particularly, when a calibration force of 1 800 N was used in the simulation. The simulation results showed a good correlation between experimental and numerical results, when Hill48 and Barlat yield criteria were used in combination with Ludwik hardening law and calibration force F with the value 900 N was applied.

Publisher

SciCell

Subject

Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3