Numerical and Experimental Analysis of Stress–Strain Characteristics in DP 600 and TRIP 400/700 Steel Sheets

Author:

Evin Emil1ORCID,Tomáš Miroslav1ORCID,Németh Stanislav2

Affiliation:

1. Department of Automotive Production, Faculty of Mechanical Engineering, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia

2. USSE Research and Development, U.S. Steel Košice s.r.o., Vstupný Areál U.S. Steel, 044 54 Košice, Slovakia

Abstract

The body constitutes the largest proportion of the total vehicle weight. Recently, increasing efforts have been made towards reducing its weight and improving its crashworthiness. By reducing its weight, fuel consumption will be reduced, and this will also translate into lower CO2 emissions. In terms of safety, vehicle body components use high strength steel which can absorb a substantial amount of impact energy. The present study pays attention to DP 600 and TRIP 400/700 stress–strain characteristics at quasi-static strain rates. The stress–strain characteristics of absorption capacity, stiffness, and deformation resistance force were investigated experimentally by tensile tests, three-point bending tests, and numerical simulations. The results indicate the potential for increasing the absorption capacity, stiffness, and deformation resistance force of the vehicle body’s deformable steel components. The present study verified the possibility of replacing physical testing with numerical simulation. A reasonably satisfactory agreement between the experimentally determined stress–strain characteristics and the numerical simulation was achieved, which can reduce the development time of deformable vehicle body components, reduce costs and optimize the selection of materials. The results extend the state of knowledge on the deformation characteristics of high-strength materials and contribute to the optimization of body components in terms of passive safety and weight.

Funder

Vedecká grantová agentúra MŠVVaŠ SR a SAV

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3