Affiliation:
1. Sultan Moulay Slimane University
Abstract
This paper is devoted to study the following nonlinear anisotropic elliptic unilateral problem\begin{equation*}\begin{cases}A\,u -\mbox{div}\,\phi(u)=\mu \quad \mbox{in} \qquad \Omega \\\;u=0 \qquad \mbox{on} \quad \partial \Omega ,\end{cases}\end{equation*}where the right hand side $\,\mu\;$ belongs to $\; L^1(\Omega)+ W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$. The operator $\displaystyle A\,u=-\sum_{i=1}^{N}\partial_{i}\,a_{i}(x,\ u,\ \nabla u)$ is a Leray-Lions anisotropic operator acting from $\; W_{0}^{1,\overrightarrow{p}} (\Omega,\ \overrightarrow{\omega})\;$ into its dual $\; W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$ and $\phi_{i}\in C^{0}(\mathbb{R},\mathbb{R})$.
Publisher
Sociedade Paranaense de Matematica
Reference18 articles.
1. Abbassi, A., Azroul, E., Barbara, A., Degenerate p(x)-elliptic equation with second membre in L1, Advances in Science, Technology and Engineering Systems Journal. Vol. 2, No. 5, 45-54 (2017). https://doi.org/10.25046/aj020509
2. Adams, R., Sobolev spaces, Academic Press, New York (1975).
3. Akdim, Y., Azroul, E. and Benkirane, A., Existence of solutions for quasilinear degenerate elliptic equations, Electronic Journal of Differential Equations (EJDE), vol. 2001, p. Paper No. 71, 19, (2001).
4. Akdim, Y., Allalou, C. and Salmani, A., Existence of Solutions for Some Nonlinear Elliptic Anisotropic Unilateral Problems with Lower Order Terms, Moroccan Journal of Pure and Applied Analysis, 4(2), 171-188, (2018). https://doi.org/10.1515/mjpaa-2018-0014
5. Azroul, E., Benboubker, M. B., Hjiaj, H. and Yazough, C., Existence of solutions for a class of obstacle problems with L1 -data and without sign condition, Afrika Matematika, 27(5-6), 795-813 (2016). https://doi.org/10.1007/s13370-015-0375-y
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献