Affiliation:
1. Laboratory of Applied Mathematics and Scientific Computing, FST, Sultan Moulay Slimane University, Beni Mellal, Morocco
Abstract
The objective of this work is to establish the existence of entropy solutions to degenerate nonlinear elliptic problems for $L^1$-data $f$ with a Hardy potential, in weighted Sobolev spaces with variable exponent, which are represented as follows
\begin{gather*}
-\text{div}\big(\Phi(z,v,\nabla v)\big)+g(z,v,\nabla v)=f+\rho\frac{\vert v \vert^{p(z)-2}v}{|v|^{p(z)}},
\end{gather*}
where $-\text{div}(\Phi(z,v,\nabla v))$ is a Leray-Lions operator from $W_{0}^{1,p(z)}(\Omega,\omega)$ into its dual, $g(z,v,\nabla v)$ is a non-linearity term that only meets the growth condition, and $\rho>0$ is a constant.
Publisher
Vilnius Gediminas Technical University