Affiliation:
1. Department of Mathematics , Laboratory LAMA Faculty of Sciences , Dhar-Mahrez, Fez , Morocco .
2. Sultan Moulay slimane University Laboratory LMACS , FST Beni-Mellal , Morocco .
3. Laboratory LSI , Polydisciplinary Faculty , Taza .
Abstract
Abstract
In this paper, we prove the existence of entropy solutions for anisotropic elliptic unilateral problem associated to the equations of the form
-
∑
i
=
1
N
∂
i
a
i
(
x
,
u
,
∇
u
)
-
∑
i
=
1
N
∂
i
φ
i
(
u
)
=
f
,
$$ - \sum\limits_{i = 1}^N {{\partial _i}{a_i}(x,u,\nabla u) - } \sum\limits_{i = 1}^N {{\partial _i}{\phi _i}(u) = f,} $$
where the right hand side f belongs to L
1(Ω). The operator
-
∑
i
=
1
N
∂
i
a
i
(
x
,
u
,
∇
u
)
$- \sum\nolimits_{i = 1}^N {{\partial _i}{a_i}\left( {x,u,\nabla u} \right)} $
is a Leray-Lions anisotropic operator and ϕi
∈ C
0(ℝ,ℝ).
Subject
Applied Mathematics,Control and Optimization,Numerical Analysis,Analysis
Reference23 articles.
1. [1] Aharouch L, Akdim Y. Strongly Nonlinear Elliptic Unilateral Problems without sign condition and L1Data. Appl. Anal. (2005); 11-31.
2. [2] Akdim Y, Azroul E, Benkirane A. Existence Results for Quasilinear Degenerated Equations Via Strong Convergence of Truncations. Rev. Mat. Complut., (2001) 17; 359–379.
3. [3] Akdim Y, Benkirane A, El Moumni M. Existence results for nonlinear elliptic problems with lower order terms. Int. J. Evol. Equ., (2013) 8; 4: 257–276.
4. [4] Antontsev S, Chipot M. Anisotropic equations: uniqueness and existence results. Differential Integral Equations (2008) 6; 401–419.
5. [5] Bendahmane M, Karlsen KH. Anisotropic nonlinear elliptic systems with measure data and anisotropic harmonic maps into spheres. Electronic. J. Differential Equations, (2006) 46; 1–30.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献