A framework to evaluate and compare synthetic streamflow scenario generation models

Author:

Treistman Felipe1ORCID,Penna Débora Dias Jardim1,Khenayfis Lucas de Souza1,Cavalcante Nelson Bernardo Rodrigues2,Souza Filho Francisco de Assis de3ORCID,Rocha Renan Vieira4ORCID,Estácio Ályson Brayner5ORCID,Rolim Larissa Zaira Rafael3ORCID,Pontes Filho João Dehon de Araújo4ORCID,Porto Victor Costa3ORCID,Guimarães Sullyandro Oliveira6ORCID,Pessanha José Francisco Moreira7ORCID,Almeida Victor Andrade de7ORCID,Chan Priscilla Dafne Shu7ORCID,Lappicy Thiago8ORCID,Lima Carlos Henrique Ribeiro8ORCID,Detzel Daniel Henrique Marco9ORCID,Bessa Marcelo Rodrigues9ORCID

Affiliation:

1. Operador Nacional do Sistema Elétrico, Brasil

2. Câmara de Comercialização de Energia Elétrica, Brasil

3. Universidade Federal do Ceará, Brasil

4. Fundação Cearense de Meteorologia e Recursos Hídricos, Brasil

5. Universidade Federal do Ceará, Brasil; Fundação Cearense de Meteorologia e Recursos Hídricos, Brasil

6. Potsdam-Institut für Klimafolgenforschung, Deutschland; Universität Postdam, Potsdam, Deutschland

7. Centro de Pesquisas de Energia Elétrica, Brasil

8. Universidade de Brasília, Brasil

9. Universidade Federal do Paraná, Brasil

Abstract

ABSTRACT Synthetic streamflow scenario generation is particularly important in countries like Brazil, where hydroelectric power generation plays a key role and properly handling the uncertainty of future streamflow is crucial. This paper showcases a collaborative effort within the Brazilian electrical sector to enhance streamflow scenario models, focusing on horizons up to one year. Five institutions proposed diverse methodologies, and their effectiveness was evaluated using a comparative framework. The results reveal the strengths and areas for improvement in each model. GHCen emerged as the top performer, excelling in both short-term and moving average analyses, while the PARX model demonstrated superior performance in specific regions. The PAR(p)-A, which is the official methodology in Brazil, was the second-best model in the moving average analysis. This research offers valuable insights for countries facing similar hydrothermal scheduling and scenario generation challenges.

Publisher

FapUNIFESP (SciELO)

Subject

Earth-Surface Processes,Water Science and Technology,Aquatic Science,Oceanography

Reference16 articles.

1. Time series analysis: forecasting and control;Box G. E.,2008

2. Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs: a conceptual approach;Cassagnole M.;Hydrology and Earth System Sciences,2021

3. Modelo PAR(p)-A de representação hidrológica e avaliação da parametrização do CVaR - Ciclo 2021/2022,2021

4. Generation of synthetic flow scenarios by means of multivariate sampling of contemporaneous ARMA model outputs;Detzel D. H. M.;Revista Brasileira de Recursos Hídricos,2023

5. Decomposition of the continuous ranked probability score for ensemble prediction systems;Hersbach H.;Weather and Forecasting,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3