Generation of synthetic flow scenarios by means of multivariate sampling of contemporaneous ARMA model outputs

Author:

Detzel Daniel Henrique Marco1ORCID,Bessa Marcelo Rodrigues1ORCID,Ávila Leandro2ORCID,Cantão Mauricio Pereira1ORCID,Geus Klaus de1ORCID

Affiliation:

1. Universidade Federal do Paraná, Brasil

2. Institut für Bio- und Geowissenschaften, Germany

Abstract

ABSTRACT This work constitutes one of the outcomes of the “Evaluation of hydrological scenario generation models” activity initiated by the Hydrological Scenario Representation Working Group (GT CH) and coordinated by ONS and CCEE. We introduce the LYNX-Series model, a contemporaneous non-periodic and multivariate variation of the autoregressive moving average model (CARMA) for generating synthetic time series of average inflow discharges to reservoirs in the Brazilian National Interconnected System (SIN). Notably, LYNX-Series couples the synthetic series generator with a multivariate sampling process to select a group of synthetic hydrological scenarios based on a similarity criterion with recent historical data. In addition to reducing the computational burden of the hydrothermal dispatch optimization process, the solution aims to enhance the representativeness of synthetic hydrological scenarios. The paper expounds on the theoretical aspects of the model and presents numerical simulations that validate its ability to replicate hydrological behaviors in various Brazilian basins.

Publisher

FapUNIFESP (SciELO)

Subject

Earth-Surface Processes,Water Science and Technology,Aquatic Science,Oceanography

Reference41 articles.

1. Sistema de informações de geração da ANEEL,2023

2. Comparison of the performance of stochastic models in the generation of synthetic monthly flows data: a case study on Marun river;Bayesteh M.;Journal of Applied Research in Water and Wastewater,2019

3. Time series analysis forecasting and control;Box G. E. P.,2008

4. Robust tests for the equality of variances;Brown M. B.;Journal of the American Statistical Association,1974

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3